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STRESS AND VELOCITY FIELDS I'A SOIL MECHANICS1 

by R.   T.   Shield 

Brown University 

Swmftry 

Lines of discontinuity in the plastic stress field of 

a cohesive soil in a state of plane strain are discussed.  The 

Jump conditions on the stresses and the restrictions on the 

velocity field in the neighborhood of the line are obtained. 

The theory is applied to the problem of uniform pressure on 

one face of a wedge (or earth dam), and to the problem of a 

loaded trapezold. 

Finally, an analytic integration of the plane strain 

equations is carried out*  Expressions are derived for the 

coordinates and curvatures of the failure lines and the velocity 

components at any point of a plastic stress field in terms of 

the boundary values. 

The results presented in this paper yore obtained in the course 
of research sponsored by the Office of Naval Rejeareh under 
Contract N7onr-35801 with Brown University. 
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The solutions of many two-dimtnsional problems in soil 

mechanics are based upon the assumption that the soil is a plastic 

material in which slip or yielding occurs when the stresses 

satisfy the Coulomb formula Cl] 

2   2  \1/2 

f = i(VV ain T + {4(dx"'V + T xyj  - c cos <p = 0,     (1) 

where c is the cohesion and  9 is the angle of Internal 

friction of the soil.  Neglecting the weight of the coil, the 

stresses also satisfy the equations of equilibrium 

(2) 
o^+-of = °'  I 

 X£ + Y. = 0. 
fix   8y 

The two characteristic lines of the hyperbolic system of equations 

(1), (2) are inclined at an angle it A + 9/2 to the direction 

of the algebraically greater principal stress at any point. As 

in [2] the characteristic linos will be called the first and 

second failure lines, with the convention that the direction 

of the first failure line at a point is obtained froui the 

direction of the algebraically greater principal stress by a 

clockwise rotation of amount *A + <p/2.  The inclination of the 

first failure lino to the x-axis will be denoted by 0* 

Denoting the principal stresses by d,  and <*2(
dl < tf2^> 

it is convenient to introduce the quantity 

(d2-V 
P=FHHi920- <3) 

Numbers in square brackets refer to tho bibliography at the end 
of the paper. 
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An arbitrary constant which has the dimensions of stress is some- 

times introduced -into the denominator of the expression for p 

in order to make p non-dimensional, but this practice will not 

be followed here. With the yield condition (1), it can be shown 

[3] that 

°x = 

fcxy 

-p CL + sin 9 sin(20 + 9)1 + c cot 9, "j 

-p[l - sin 9 sin(20 + 9)] + c cot q>, f 

p sin 9 cos(2© -f 9), 

M 

and the equations of equilibrium (2) can be replaced by the 

equations 

* cot 9 log p + 0 = const, along a first failure line, 

•i cot 9 log p - 0 = const, along a second failure line, 
(5) 

These equations were obtained by Massau Df3 for a cohesionless 
n .  _ 

soil and by Kotter L5J for a cohesive soil. 

Drucker and Prager [6 ] considered a proper generalization 

of the Coulomb hypothesis (1)  and used the concept of plastic 

potential [7]  to obtain a stress-strain law,  assuming that the 

soil is a perfectly plastic body.     In the case of plane strain, 

the  stress-strain law corresponding to the yield function (1)  is 

-*-*f. 06. >xy-SV> (6) 
x       - y 

where ex, e , y        are the plastic strain rates and ^ is a 

non-negative factor of proportionality. With equations (k), the 

relations (6) can be written 

i, 1. * iii —•*»— 
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ex B jfsin? - sin(2© + 9)} , > 

£y »
Xy{sin9 + sin(2y T 9)} , I (7) 

Yxy = X cos(20 + 9). J 

It will be assumed that there is no (reformation of the soil 

until plastic yielding occurs and therefore 

au _f        fix-*        ia + az=Y 
ox " ex»       ey ~ ey>       ey    ax      xy > 

where u,v are the components of velocity along the x«y-axes. 

The rate of dilation is found to be 

ex + e  a X sin 9^0, W 

so that plastic deformation must be accompanied by an increase 

in volume if 9^0, 

It was shown in [2] that the relations (7) imply that 

the rate of extension along the failure lines is zero. Also, 

the characteristic lines of the velocities coincide with the char- 

acteristic lines of the stresses and it is therefore convenient 

to refer the velocity equations to the characteristic lines* The 

orthogonal projections of the velocity vector on the directions 

of the first and second failure lines passing through the point 

are denoted by v,  and v2. The velocity projections v-p v2 

are related to the cartesian components u,v of the velocity 

by the equations 

v^= u cos 0 + v sin 0, v2 - -u sin(0+9) + v cos (©+9). 

u=[v1cos(0+9)-v2sine}soc 9, v =[v1sin(0-»9 )+v2cos Gjsec 9. 
(9) 

J
1
 '.»- 
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The condition that the rate of extension along the failure lines 

is zero is expressed by the equations 

dv, - (v-itan 9+ V2 sec 9)d0 = 0 along a first failure line, " 

dvp + (v,sec 9 + v« tan qp)d© = 0 along a second failure line, 
(10) 

and these equations, together with the velocity boundary condi- 

tions and the condition of non-negative dilatation, determine 

the velocity field when the failure lines are known. 

Discontinuities in the velocity field were considered 

in [2] and it was shown that a line of discontinuity in the 

velocity field must be a failure line.  The change in velocity 

across the line must be inclined at an  anple 9 to the line of 

discontinuity, so that a discontinuity in the tangential velocity 

is accompanied by a separation or a discontinuity in the normal 

velocity.  In terms of the velocity projections v^ and Vp, 

the requirement that the change in velocity is inclined at an 

angle  9 to the line implies that either v-^ or V2 is con- 

tinuous across the line, according as the line is a second or 

first failure line respectively. 

2.  Discontinuities in the stresses. 

In the theory of a Prandtl-Reuss material, for which 

9 - 0, the possibility of lines of discontinuity in the stress 

components is well known, and discontinuous stress fields have 

proved useful in many problems. Discontinuous stress fields are 

of value when limit analysis is used to obtain lower bounds for 

the collapse values of the surface tractions in a body or 

assemblage of bodies, even though the stress fields may be 

without obvious physical significance.  It seems worthwhile, 

'*:' ** mm 
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therefore, to consider discontinuous plastic stress fields in a 

soil, not only from the viewpoint of obtaining real solutions 

but also with regard to future applications of limit analysis 

to soil mechanics* A discussion of stress discontinuities in a 

cohesionless heavy soil has been given previously by Massau [**•]• 

The following discussion applies to a cohesive soil* 

In Pig. 1, the line 't-'t represents an element of 

a line of stress discontinuity separating the plastic stress 

fields &    and Jj. Subscripts a. and £ will be used to 

distinguish the values which a quantity assumes on the two 

sides of the line. The normal to the line is inclined at an 

angle Q to the x-axis and, from equations (k), the normal 

and tangential tractions on such a line are 

N = -p [1 + sin 9 sin(2Q-2Q+<p)] + c cot 9, 
(11) 

T = p sin 9 cos(2Q-20»-9)« } 
The equilibrium of the small rectangular element shown in the 

figure requires that the normal and tangential components of 

stress N and T are continuous across the line, but the 

interior components N , N' may be discontinuous. From equa- a D 

tions (11),  the equilibrium conditions are 

pft[l+sin9  sin(206-2Q+9)]  = pbCl+sin 9  sin( 2^-20.9) ],      ] 

pa cos(2ea-2^+9)  = pb cos(20b-2Q+9). J 

The elimination of p , p  between these two equations gives* 
a  D ? 

e.fter some reduction, 

sin(©a+0b-2af9) + sin 9 cos (©a-©b)  - 0, (13) 

- V KM—MMM 1     11 •*    *•   "i   T- ' 111 -•' 11     -Am m       --••-•-•  —— • 

wmm 
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provided that sin(© -Ofe) t 0, that la, provided that the dis- 

continuity is not of zero strength* 

The condition(13) together with one of the conditions 

(12) correspond to the Jump conditions established by Prager [8] 

for a Prandci-Reuss material (9 = 0). For zero angle of friction, 

condition (13) becomes 

0a + 6b = 2 2+ nm (l1*) 

The Mohr's circles for the regions a, and b. are 

shown in Fig, 2, where p  is taken greater than pb for 

definiteness.  The circles touch the yield locus 

jtj = c - 0 tan 9> 

since the regions are at the point of yielding* The stress point 

C  has the coordinates (N, -T) and the circles intersect at this 

point. The poles of the two circles are obtained by drawing a line 

through C parallel to the element t - I   of the line of dis- 

continuity.  The points Pa, Pb where this line meets the circles 

are the poles of the circles.  If A^, B^    and AD, BQ denote 

the points of contact of the circles a and Jj with the yield 

locus, then the lines P^, PaBft and PDAb) P^B^ give the 

directions of the first and second failure lines in the regions 

A and b, respectively*  It cen be seen from the diagram that 

the direction of the line of discontinuity lies in the acute angle 

formed by the failure lines in region a, and In the obtuse angle 

formed by the failure lines in region .b. 

It can easily be shown that a failure line cannot be 

a line of discontinuity in the stresses*  Since a discontinuity 

in the velocity field can occur only across a failure line, it 

B '"  > 
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follows that the velocity field must be continuous aoross a line 

of stress discontinuity* For a straight line of discontinuity, 

vhich may be taken to be parallel to the x-axis, the continuity 

cf the velocity component u across the line implies that 

8u/8x = ex is continuous across the line.  This argument can 

be extended to show that tx    is continuous across a curved line 

of stress discontinuity at any point P of the line, where the 

x-axis is taken parallel to the tangent to the line at P. 

Considering first a Prandtl-Reuss material, equations (7) 

give 

ex s ~ 2 sin 2e» 

since 9 is zero for this material.  It follows that 

\a sin 20a =*b sin 2©b, (1?) 

where \ , X^ and ©a, ©b are the values assumed by  X and 0 

in the two stress fields at the point P.  The jump condition (l1*-) 

on ©a, ©j, requires that 

©b = -0a ±  n*. (16) 

Since the line is not a failure line, sin 2Qa j£  0, and the 

substitution of (16) in (15) gives 

Xa s  -V 
This equation implies that X  and X.  are both zero at the 

point P because Xfl and X^ are non-negative quantities. The 

plastic rate of strain is therefore zero at points on the line of 

discontinuity, and the line must be considered as a filament of 

non-plastic material.  Elastic strains are neglected so that the 

mc*'.<  •:• 
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filament must be taken to bo inextensible but perfectly flexible. 

This conclusion has been reached previously [9,10] by assuming that 

the line of discontinuity is the limiting case of a narrow transi- 

tion region in which the stress varies in a rapid but continuous 

manner. 

In the same way, a line of stress discontinuity in a 

soil must be considered as an Inextensible filament of non-plastic 

material.  Apart from the algebra, the discussion is the same as 

the above discussion for a Prandtl-Reuss material, and it will not 

be given here. 

3*   Msflgg antes aaUaSsral preasurgi ftirfgas aalaSlana* 
The problem of wedges with uniform pressure on one face 

will be considered in this section and in the following section. 

A continuous stress solution for obtuse angled wedges has been 

given by Prandtl [ll] and the pattern of the failure lines is 

shown in Fig. 3a. The wedge ABE of angle p0 (P0 i V2) is 

loaded by a uniform pressure P along AB, producing a plastic 

state of stress in the region ABEDC.  The regions ABC, BDE are 

regions of constant stress and the region BCD is a zone of radial 

shear of angle fy)-V2.  The pressure P required to produce 

plastic flow with this pattern of failure lines is given by 

P = c cot<p [expC(2^ - r.) tan <p ]tan2( £ + | ) - l} .  (17) 

The stress field of Fig. 3a is not applicable to acute 

angled wedges ({L. < n/2)  since the two constant stress regions 

ABC, BDE would overlap. However, the introduction of a line of 

stress discontinuity in the plastic stress region enables a stress 

solution to be found. Fig. 3b shows the wedge loaded along AB. 

• •• nil- m » • 

•HOM 
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The constant stress regions ABC, BCD are separated by a line of 

stress discontinuity BC which is inclined to AB at an angle 

Y to be determined,  AC and CD are first failure lines.  Th* 

different values a quantity may assume in the regions ABC, BCD 

will be distinguished by the subscripts j& and b. respectively. 

Choosing the x,y-axes as shown in the figure, the inclination © 

of the first failure lines assumes the values 

©a - 0,   ©b - -(*/2 - B0). 

The substitution of these values into the Jump condition (13)> 

in which Q is put equal to y- <*A - 9/2), gives the relation 

sin (BQ - 2Y) •» sin ? sin BQ = 0. 

This equation determines the angle  Y and the relevant root of 

the equation is found to be 

Y = BQ/2 • n/2, (18) 

where  n is given by 

sin u = sin 9 sin BQ,   O^i */2. (19) 

The value of p in the region BCD Is determined by the condition 

of aero traction on BD and it has the value 

c cot 9 
D  (1-sin <p) 

The second equation of equations (12) then gives 

- c cot y slri(B0"H) 

a  (1-sln 9) sin(B0+n) 
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With equations (11), the normal pressure on AB can now be found 

and a little rearrangement gives the value 

P = o cot 9 W( f • | ) aSM - l) .        (20) 
\ *     d     sin(P04.ji)   J 

When    9 = 0    (Prandtl-Reuss material),    \L    is also zero and (20) 

takes the form 

P = 2c(l - cos  pQ), 

agreeing with the value obtained by Prager [ 8]« For small values 

of p0, expression (20) is approximately 

P = cp£ cos 9 , 

and it follows that for small values of pQ,  the ratio P/c 

decreases as the angle of friction 9 is increased. Fig. h& 

shows the variation of P/c with the angle of the wedge for 

9 = 0°, 20° and *f0°.  The limiting case  9» 90° is also 

shewn in the diagram* 

When 0O = n/2,  the expressions (17) and (20) have the 

common value 2c tan (*A • 9/2), and the discontinuous solution 

is a continuation of the continuous solution. The full lines in 

Fig. 5b shows the variation in P/c with the wedge angle 0O 

as furnished by the two solutions for angles of friction of 0°, 

20 and kO  • The discontinuous solution also satisfies all the 

stress conditions when the angle of the wedge is greater than n/2, 

and the stress field, Fig. 3c, is an alternative solution to the 

continuous solution of Fig, 3a. However, it will be seen that a 

velocity field cannot be associated with the stress field of Fig. 

3c, so that the discontinuous solution is not acceptable physically 

for wedge angles greater than a right angle. The pressure P as 

rs 
inM 
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finished by the discontinuous solution for obtuse angled wedges is 

again given by (20) and this value is lower than the value (17) 

obtained from the continuous solution*  The broken lines in Fig* 

Wb give the values of P/c for varying P0^0 ^
w^ for an8le3 

of friction of 0°, 20° and k0°. 

It should perhaps be pointed out that the line of 

discontinuity BC in Pig. 3c is not the line joining th9 point 

B in Fig. 3a to the point of intersection of the lines AC, ED 

except when the angle of friction is zero. 

if. Wedge under unilateral pressure. Velocity solutions. 

Without restricting the generality of the discussion, 

the boundary condition on the velocity field in the problem of the 

previous section may be taken to be that the normal velocity must 

have a given distribution on the loaded part AB of the wedge. 

The velocity in the plastic region has to be determined from this 

boundary condition and the boundary condition at the plastic rigid 

boundary.  The given normal velocity along AB must be such that 

the resulting velocity field has non-negative dilatation every- 

where and also, in the discontinuous stress solutions, the lines of 

stress discontinuity must behave as inextensible filaments. 

Considering first the continuous stress field of Fig; 3a, 

the line ACDE, which is a first failrj?e line, separates the region 

of plastic flow from the material which remains at rest. The 

velocity along ACDE must, therefore, be inclined at an angle 

9 to ACDE so that Vp is zero along ACDE.  Since the second 

failure lines zz*  straight throughout the plastic region it follows 

that Vg is zero everywhere.  The value of v,  along AB is 

known from the given normal velocity of AB and the fact that 

i• aytaapnwi MII — m,-•• -nwm —m 
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v2 is zero along AB. The variation of v^ along the first 

failure lin&a is given by the first of equations (10) and knowing 

v  along AB it i3 a simple matter to obtain v^ throughout 

the plastic region* The condition of non-negative dilatation 

will be satisfied provided that the given normal velocity of a 

point on AB is a non-decreasing function of the distance of the 

point from A* 

Considering now the discontinuous stress field for the 

acute angled wedge, Fig. 3b, the velocity field must be such that 

the discontinuity line BC moves as an inextensible filament. 

Since the material below the plastic rigid boundary ACD remains 

at rest, this implies that the velocity component along BC Is 

zero for points on BC.  In determining the velocity field it is 

convenient to use oblique axes <x,p having A as origin and 

directed along the first and second failure lines at A, Fig. % 

The normal velocity f(n) is prescribed along AB, the line A3 

being given by a = 6 = r\» 

The velocity field in the region ABC is determined in a 

very similar manner to that used by Lee [9] for the same problem 

in a Prandtl-Reuas material.  It is unnecessary, therefore, to 

give the details. The value of v- in regions a and Jj of 

Fig. 5 is found to be 

v^B) = 2 cos( \  - \  ) f(p). 

The velocity projection v2 is zero in region .§ because of the 

boundary condition along AC, while in regions £ and 0, it is 

given by 

v2(a) = -2 cos( {-! ) tf< 2|l >, 
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where t * sin ty  sec(\|i-9), $      is the angle BCF and where the 

length of AC is taken to be unity. For other points in the 

region ABC, v  and v2 are given in the form of finite series. 

As the apex B is approached, the limiting expressions take the 

form 

vx(p) = 2cos<5 - f> f(P)-t[2cos(g - I) f(^) - 

v2 (a) - -t[2cos(5 - |) f(^=i) -t{2cos(5 - f) f/ * t~ 
1l-)]' 

'(21) 

The continued fractions which are the arguments of the function 

f in these expressions represent the coordinates of points on 

AB after successive reflections at BC and AB along lines 

parallel to the oblique axes at A. 

It can readily be shown that the velocities v^, v2 

approach limits at the vertex B. Also the limits are such that 

«he velocity of the plastic field near B approaches the velocity 

of the non-plastic filament BC at B, this velocity being unique- 

ly determined by the velocity condition on BC and the given 

normal velocity of AB at B, 

The velocities of the points on the filament BC are 

now complete]y determined. The velocity of a point P in the 

region ECD is determined from the velocity of the filament BC 

and the boundary condition at the plastic rigid boundary CD, The 

velocity at P depends only upon the velocities of the points X, 

Y where the failure lines through P meet the line BC (see Fig. 

5). v, is constant along PX, v2 is constant along PY and 

•••^ 
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v  and v? are known at the points X,Y.  If ? lies in the 
ak • 

region CDE then v2 is zero. 

The function f(*l) which specifies tho distribution of 

normal velocity along AB can not be chosen in a completely 

arbitrary manner. Certain restrictions must be placed upon 

f(r)) in order that the dilatation be positive everywhere in the 

plastic region. The restrictions are most easily obtained in 

terms of the velocity X(^) of the non-plastic filament at the 

point distance l>    from C. %(l)    *3 continuous since the filament 

is non-piastic and also x(0) - 0 from the condition at C. 

Omitting the details of the analysis, it ic found that the dilata- 

tion will be positive everywhere provided that x1^) 2. ° w** 

X'Ct) is a non-decreasing function. These conditions imply that 

the rate of change of curvature of the filament increases towards 

the vertex. Thus the wedge behaves in a similar fashion to a 

beam which is bent by uniform loading. 

The restrictions which have to be placed upon f (r\) are 

obtained by expressing t(i\)    in terms of tho restricted function 

In tho discontinuous stress solution of Fig, 3°> the 

velocity conditions for the problem of the acute angled wedge 

apply in this case also. Tho plastic rigid boundary AC enforces 

v2 = 0 along AC and it follows that v « 0 throughout region 

ABC of Fig. 3o, since the failure lines are straight. The condi- 

tion that the velocity component along BC is zero for points on 

BC then requires v. to be zero on BC and in consequonce v^ 

must be zero throughout tho region ABC. Thus the velocity field 

obtained requiros f(n) » 0 along AB and the solution does not 

mm 



All-81 16 

constitute plastio flow. The discontinuous stress solution for 

the obtuse angled wedge is therefore physically inadmissible, 

5. Loaded trapezoid. 

A further example of discontinuous stress fields is 

shown in Fig. 6a. The trapezoid ABCD is in a plastic state of 

stress due to the normal pressures P,Q on the parallel sides 

AB,CD,  the sides AD.BC being free from applied traction. The 

lines AC, BO, CO, DO are lines of stress discontinuity separating 

the regions a,, b., c, d of constant stress, where the angles marked 

Y, & in the figure remain to be determined. 

The stress boundary conditions require that 

8,, = -(£ + §) + X, 

°0  - -$ * |>. 
where 2X is the angle between the sides AD, BC and where the 

subscripts refer to the regions marked a,, b,, £ in the figure. 

With these values of 0,  the Jump condition (13) at the dis- 

continuity lines BO, CO show that 

cos (2Y + X) = sin 9 cos X, 

cos (2 6 - X) « sin 9 003 X, 

and the relevant roots of these equations are 

where 
JI cos v * sin 9 cos X»     0i v^i , 
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The values of p In the regions a, and c can be 

deduced from the known value of p in region £ and the jump 

conditions (12) at the lines BO, CO. The pressures P, Q can 

then be obtained and it is found that 

P-o cot f{--«?($• })*g^-l} , ] 

Qc0cot9{tan2$+f)f|$$-l}    . 
(22) 

As the angle of friction 9 tends to zero these expressions tend 

to the values 

PQ « 2c(l4sin X),     Q0 « 2c(l-sin x)» 

agreeing with the values obtained by Winzer and Carrier [12] for 

a Prandtl-Reuss material. 

It can be shown that a velocity field can not be 

associated with the stress field of Fig. 6a. This follows in the 

same way in which it was shown that a velocity field could not 

be associated with the stress field of Fig. 3c. The stress field 

is therefore physically inadmissible. 

If the sides AD, BC of the trapezold are continued 

beyond the points D, C a truncated wedge is obtained. A solu- 

tion corresponding to a uniform pressure on the top surface of 

the wedge has been given by Prandtl [9] and th« stress field is 

outlined in Fig. 6b. The value of the normal pressure P* is 

in this caso 

P» . 0 cot 9 (tan2(£ + %)  exp(2x tan 9) - 1} . 

and this value is greater than the value P given by equation 

(22). A velocity fiold oan be associated with the stress field 

•?rn 
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of Fig. 6b provided that the given normal velooity of the points 

on AB is constant or a monotonio function of the distance from 

A. 

6.  Inteeration of the plane strain equations. 

In obtaining solutions to plasticity problems in soil 

mechanics the stress distribution can not always be built up 

from the simple failure patterns of the Ranklne zones and the 

zone of radial shear. In complex problems involving fields of 

varying stress it is usual to obtain tho strosses by approximate 

numerioal methods [33. In this section exact expressions will be 

derived for the coordinates and curvatures of the failure lines 

and the velocity components at any point of a stress field in terms 

of the boundary valuos. However, the expressions involve integrals 

which can be evaluated in finite form only when the boundary 

conditions are particularly simple. For this reason tho analysis 

is of limitod importance and, as in tho theory of a Prandtl-Rouss 

material, will mainly be of value in checking tho accuracy of the 

usual approximate methods. 

In Fig. 7, the x, y-axes are taken at a point 0 along 

and normal to the direction of tho first failuro line at 0. The 

first and second failuro lines 0A and OB will be called the 

a base-line and the p* base-line respectively. The curvilinear 

coordinates of a point P are defined by the pair of quantities 

(a,P); where a is the value of 0 at the point A where the 

second failure line through P meets the a base-line 0A, and 

where 0 is the value of 0 at the point B where the first 

failure line through P meets the p base-line OB. The corre- 

spondence between (a,p) and the coordinates (x,y) of P is 
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one to one except when one of the families of failure lines is 

straight.  It follows from the definition that a and p are 

constant along the second and first failure lines respectively, 

and the base-lines are given by p = 0 and u = 0. 

With equations (5) it is not difficult to show that 

9 s a + p 9 

(22) 

1 cot 9 log p = p - a + ^ cot 9 log pQ, 

where 9 and p are evaluated at the point P and p  is 

the value of p at the origin 0.  The first of equations (23) 

is a statement of what is usually known as Hencky's first theorem 

[13], which is expressed analytically by 

The theorem was first stated by Massau [h]  for the case of a 

cohesionless soil.  Equation (23) can be re-arranged to give 

2a = -1 cot 9 log p0 - ( i  cot 9 log p - 9), 

2p = - -i cot 9 log P0 + ( 2 Cot V  l0& P • Q)«- 

Coordinates x,y are introduced by means of the equa- 

tions 

x = x cos(9-Kp) + y sin(9+q>),  y = -x sin 9 + y cos 9, 

x = [x cos 9 - y sin(9+9)} sec 9,    y = [x  sin9 + y cos(9+9)} sec 9. 

(26) 

The geometrical significance of the coordinates (x,y) is shown 

in Pig. 8j x and y are the distances of the origin 0 from 

(25) 
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the tangents to tho second and first failure linos at P.  The 

coordinates x,y have been used in the theory of the Prandtl- 

Reuss material [l*f]»  On a first failure line (on which dy <= 

tan 9 dx) equations (26) give 

dy = - sin 9 dx + cos 0 dy - (x cos © + y sin 0) dO 

= - (x sec 9 - y tan 9) d©, 

and therefore 

dy +(x sec 9 -y tan 9>d© = 0 along a first failure line.   (27) 

Similarly, 

dx -(y sec 9 -x tan 9)d© = 0 along a second failure line*  (28) 

The radii of curvature R,S of the first and second 

failure lines «t the point P are defined by 

R  8sx 
1  = - |ft , (29) 
S    ds2' 

where s.^ and S2 are the arc-lengths along the first and second 

failure lines. Pig. 9 shows the intersection of two neighboring 

first failure lines with two neighboring second failure lines. 

Tho small angles ©g - ©A, ©^ - ©A will bo denoted by AO^AOg 

respectively.  In •; ne figure, A©L is positive while A©2 is 

negative.  It follows from the dofinitions (29) that 

HAQj =Asx,     SA©2 = -As2 (30) 

and therefore 
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From the geometry of Fig. 9 and equations (30), 

DC = As - AO sec 9 A s2 - A©2 tan9 A s., 

= As1 - AQ^As (sec 9 - •§ tan 9), 

where the sign of A9? has been taken into account.  Hence 

TT (As ) = -A9, (sec m - •§ tan 9). Equation (2*f) shows that 
8s2  1      1    T  S    T 

A©,  is a constant and it can be taken outside the operator on 

the left hand side of equation (31), and we have finally 

AS = -(sec 9 - <§ tan 9). ^ 
es2      

T S 

Similarly f (32) 

Jf = -(sec 9- I tan 9). J 

These equations give the variation of the radii of 

curvature along the failure lines. The corresponding equations 

for a cohesionle>ss heavy soil have been deduced previously by 

Massau[*f]. When 9=0 equations (32) become 

ftfi « -1,  M . -1. 
8s2    '   8Sl 

and this is an analytical statement of Hencky's second theorem 

for a Prandtl-Reuss material. 

The substitution of RAO,  and -SAO^ for the arc- 
1 2 

lengths AS, and AS2 gives an alternative form of equations 

(32), 

dS +(R sec 9 - S tan 9)d0 = 0 along a first failure line, 

dR -(S sec 9 - R tan 9>d© = 0 along a second failure line 
J(33) 
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On a first failure line    dO = da   and    dO = {J      en a 

second failure line so that equations (10)  can be written 

3a    "   ^Vl  tan ' + V2   S9C  $)   ~ °* 

-g*» + (v2 tan 9 + v    sec  9) = 0. 

An alternative form of these equations is 

8af viexP{(P~*)  tan 9}]- sec^ v2 exp{(p-a) tan9}c 0, 

jw-[v2exp{(p-o)  tan 9}]+ sec9V,  exp{(0-a)  tan9} * 0. 

In the same way, equations (27) and (28) can be replaced by 

JL[y exp{$-a)  tan 9)]+ sec 9   x exp{(0-a)  tan 9}= 0, 1 

•Al x exp{(jp-o)  tan 9)]- sec 9  y exp{(0-a) tan 9}= 0, 

and equations (33) become 

l£[S exp{^-a)tan 9}]+ sec 9 R exp{(p-<x)tan 9} = 0, 

^{R expf(0-a)tan 9}]- sec 9  S exp{(p-a)tan 9} = 0. J 

(3»f) 

(35) 

(36) 

With equations (23), the exponential term in equations (3*f), (35), 

(36) can be written 

exp{(p-a)tan 9} = exp j \  log JL} = /JLj . 

It can easily be deduced from equations (3*f), (35), (36) 

that each of the quantities v , v2, x, y, R, S multiplied by 

exp{(p-a) tan9} satisfies the differential equation 

• JB' "-T- 
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2 
a f + sec2 9 f = 0. (37) 
dadp 

The method of solution of this equation, which is one form of the 

equation of telegraphy, depends upon the manner in which the 

boundary conditions on the function f are prescribed.  The 

analytic solution for one type of boundary condition is given 

below.  The solutions for other types follow closely the analytic 

solutions for the corresponding problems in a Prandtl-Reuss 

material [10]. 

We suppose that the stress components are given along 

a curve 7   which is not a failure line.  If only the normal 

and tangential stresses are given on £, two values for the 

interior stress component can be obtained from the yield condition 

and the correct value must be determined from the conditions of 

the problem in question.  The stresses on S define tho variation 

cf p and 0 along I, and, from the theory of characteristics, 

these boundary values define the stress field in the region DEC 

enclosed by I and the two failure lines, one from each family, 

passing through the end points D,E of £ and meeting at a 

point C.  In Pig. 10a, the failure line DC is taken to belong 

to the first family of failure lines. The values of a and  0 

along 2   can be obtained from equations (25)  and Fig. 10b shows 

the configuration in the  ap* plane. 

The values of R and S along  2 are obtained as 

follows.  If s is the arc-length along T,   from the point D 

then 

JL = coo(t|>-q>)sec9 -g|- • sin i|> sec 9 ~- ,        (38) 
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where 9  is the angle between the first failure direction and 

the tangent to 2.  Hence, from equation (29), 

~ s 003(9-9) sec 9/R - sin 9 sec 9/S , 
8s 

and also 

_L[JL cot 9   log p] ss - cos(>i>-9)  sec 9/R -  sin \t» sec<p/S 
ds 2 

fr<-n equations (>) and (29).    R    and    S    are therefore given at 

points on   Z    by the relations 

jL«    -co,9       .jL[lcotV    logp-Q],   ) 
R      2 costy-?) 8 I 

1 . .  C°8<P A [ 1 cot 9 log p + 0 ] . 
S    2 sin 9 os L 2 

(39) 

The derivatives of R and S with respect to  p and  a respective- 

ly are known along £  from equations (36) when R and S are 

known along Z • The other derivatives can then be calculated from 

the equation 

££ = [cos(iJ.-9)sec 9/R} §£ - (sin * sec 9/s}|| ,     (i*o) 

which fellows from equation (38) and the definitions of R, S. 

The boundary values of (x, y) are given immediately 

by equations (26) so that the boundary values of the quantities 

x exp{(p-a) tan 9), y exp{(0-a) tan 9} can be found.  The 

derivatives of these quantities at points on 2 are calculable 

from equations (3?) and (»fO). 
: 

We suppose also that v^ and v  are specified on the 

curve 2 , The boundary values assigned to v,, v2 must be 

compatible with the stress boundary conditions on 2 in order 

M 
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to ensure that the resulting velocity solution has non-negative 

dilatation everywhere.  The quantities v.[exp\(B-a)tan 9} , 

v?exp((p-a) tan 9} are then known on Z and the derivatives of 

these quantities at points on S can be found from equations (3^-) 

and (*f0).  This is equivalent to specifying a member of the pair 

(v ,v2) and one of its derivatives since the other member of the 

pair can be determined from equations (3*+) and (Mo). 

Thus the problem of determining the quantities (v^Vg), 

(x,y) and (R,S)  in the region DEC is reduced to the problem 

of determining a function f(a, |J) which satisfies equation (37) 

and which has prescribed values for f and one of its derivatives 

on the curve I ,  The other derivatives at points on 2) can be 

obtained from equation (*f0).  Let P(a,b) be a point in the region 

DEC and lot AP and BP be the failure lines through P meeting 

the curve 2 at A and B.  Employing the method of Rlemann, a 

particular solution of equation (37) with certain properties to be 

defined later will be denoted by G(a,p).  It follows that the 

expression 

is a perfect differential since 

of-£-« .of sec2<p= f ffjL . 
8a9(J Oaep 

The integral of the expression (*fl) taken around any closod curve 

is therefore zero and if the expression is integrated around the 

curve APBA there results 

T- 
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'•["H-*®***]! «&-<&« 
(*f2) 

{W&f-'tt^ •Cfgf-og,f)dp} 
B 

In order tc evaluate the first two integrals explicitly, the 

function G(a, 3) is now defined to be such that G = 1 on AP 

and BP.  This implies that |§ = 0 on AP and £S = 0 on BP 

and, after some re-arrangement, equation (39) gives 

It can be shown that the particular function G is given by 

G(«,B) = J0[2 sec <p{(a-a)(b-B)}*], 

where J0(O is the Bessel function of order zero, 

J0 + J + J0 
s °t   J0<°> " If   Jo(0) s  °- 

Equation (V3) therefore expresses the value of f at the point P 

in terms of f and its derivatives along A3, f can bo replaced 

by any one of the quantities v., v2, x, y, R, s multiplied by 

exp{(B-a) tan 9}. 
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FIG. 6a.    DISCONTINUOUS  STRESS   SYSTEM   FOR  LOADED TRAPEZOID 
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FIG. 7    DEFINITION OF THE CURVILINEAR   COORDINATES    a, I 

FIG, 8.   GEC METRICAL  SIGNIFICANCE   OF THE   QUANTITIES   ity 
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FiG. a  CURVILINEAR   RARALLELOGRAM   FORMED BY NEIGHBORING FAILURE UNfcS 
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FIG. ta  FAILURE LINES AND BOUNDARY CURVE X IN BOUNDARY VALUE 
PROBLEM   CONSIDERED 
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